Oxidation of Nickel(II) and Copper(II) Complexes of NN-Diethyldithiocarbamate

By YUTAKA NIGO, ISAO MASUDA,* and KOICHIRO SHINRA

(Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada, Suita, Osaka, Japan)

Summary On reaction of copper(II) and nickel(II) complexes of NN-diethyldithiocarbamate with Br₂ in CS₂ solution, the central metal ions of the complexes are oxidised to form compounds of formula $Cu^{III}(dtc)Br_2$ and Ni^{IV}(dtc)₂Br₂, respectively.

IT has been shown that the complex Cu^IL, where L is the NN-di-n-butyldithiocarbamate monoanion, reacts with Br, in CS_2 solution to give $Cu^{III}(L)Br_2$.¹ In a recent communication² it was reported that iron, cobalt, antimony, and copper complexes of NN-diethyldithiocarbamate (dtc) are oxidized by Cl₂ or Br₂ in CHCl₃ solution and form compounds containing an oxidized positive ion of dtc.

We found that $Cu^{II}(dtc)_2$ could be oxidized by Br_2 or I_2 in CS₂ solution to Cu^{III}(dtc)Br₂ or Cu^{III}(dtc)I₂. Cu^{III}-(dtc)Br₂ was also formed by oxidizing Cu^I(dtc) with Br₂. The CuIII complex obtained was characterized by elemental analyses, i.r., and electronic spectra.

In the same way, $Ni^{II}(dtc)_2$ was converted into a complex with formula Ni^{IV}(dtc)₂Br₂. This is thought, on the basis of available data, to be a very rare example of a low-spin Ni^{IV} complex with a planar chelate structure.³ The complex is soluble in organic solvents such as acetone, CHCl₃, or CH₃CN, and the solutions are stable. The complex is decomposed in aqueous solution, with almost quantitative

precipitation of Ni^{II}(dtc)₂. Molecular-weight determination in CHCl₃ solution gave a value of 514, which corresponds closely to the above formula. $Ni^{IV}(dtc)_2Br_2$ is diamagnetic and the n.m.r. spectrum in CDCl₃ shows resonances at τ 8.6 (CH₃: triplet) and 6.2 (CH₂: quadruplet), with an integral ratio of 3:2. This n.m.r. feature is quite similar to that of Ni^{II}(dtc)₂ which shows two peaks at τ 8.6 (CH₃: triplet) and 6.1 (CH₂: quadruplet). Thus, the n.m.r. spectral data indicate that the (dtc) ligands are arranged in a planar and bidentate fashion in the complex.⁴

The electronic spectrum of Ni^{IV}(dtc)₂Br₂ in CH₂Cl₂ is characterized by intense absorption bands at 435 (log ϵ 3.9) and 500 nm (log ϵ 3.7). The i.r. spectrum of Ni^{IV}(dtc)₂Br₂ shows essentially the same pattern as that of $Ni^{II}(dtc)_2$ in the 1700-650 cm⁻¹ region.

The (C....N) frequency for Ni^{IV}(dtc)₂Br₂ is observed at 1530 cm⁻¹, compared with 1500 cm⁻¹ for Ni^{II}(dtc)₂. This shift might be caused by a higher positive charge of the central metal ion in the NiIV complex.5

The polarographic behaviour of Ni^{IV}(dtc)₂Br₂, investigated in dimethylformamide solution, is significantly different from that of $Ni^{II}(dtc)_2$, and this provides the main evidence for the presence of Ni^{IV} in the complex.

(Received, January 30th, 1970; Com. 144.)

¹ P. T. Beurskens, J. A. Cars, and J. J. Steggerda, Inorg. Chem., 1968, 7, 810.

² J. Willemse and J. J. Steggerda, Chem. Comm., 1969, 1123. ³ W. Hieber and R. Bruck, Naturwiss., 1949, 36, 312; R. S. Nyholm, Chem. Rev., 1953, 53, 290; K. A. Jensen and V. Krishnan, Acta Chem. Scand., 1967, 21, 2904.

⁴ B. F. G. Johnson and K. H. Al-Obaidi, Chem. Comm., 1968, 876.

⁵ J. Chatt, L. A. Duncanson, and L. M. Venanzi, Nature, 1956, 177, 1042.